您的位置:云顶国际 > 现代文学 > 管桩的应用和研究现状分析

管桩的应用和研究现状分析

2019-11-23 09:21

石油化工装置的桩基设计质量与施工质量控制

高强预应力混凝土管桩液压法的施工情况如何呢,下面本网为大家带来相关内容介绍以供参考。

下面是本网给大家带来关于管桩的应用和研究现状分析,以供参考。

时间:2016-12-20 08:11点击: 次来源:好文学作者:编辑评论:- 小 大

90年代以来,广东湛江沿海滩涂和软土地区,高强度预应力混凝土管桩已被推广应用于房屋建筑和桥梁、码头等工程中。软土地基广泛采用预制桩基础,用柴油锤击入桩时噪声大且拌有浓烟油污,尤其在市区中心和居民区内的施工中,有悖于环境和文明施工要求。以液压法压入式施工桩工艺替代锤击,既无噪声也对环境无任何污染,具有广泛的应用前景。本文以湛江自来水公司、湛江海运集团公司工程的桩基工程为例,介绍高强度预应力混凝土管桩的施工方法,设计、施工中应注意的事项及适用条件以及桩的质量控制。

管桩作为一种新桩型以其施工方便、承载力高、质量可靠、较为经济等优点越来越得到广泛的应用。本文根据管桩的承载力特性和受力状况,分析了影响管桩承载力的因素以及提高管桩承载力的方法,并基于对施工中常见问题的探讨,提出有效的防治措施。

好的开始是成功的一半,化工装置基础施工中出现的重要质量问题,下面是小编搜集的一篇探究石油化工装置施工质量控制的论文范文,欢迎阅读参考。

云顶国际登录官网手机版,1 工程概况

管桩作为一种地基处理及桩基础形式从上个世纪初产生到现在已经得到了很大的发展,在各种建筑基础中得到广泛地应用,并发挥着巨大的作用。从国外管桩的发展来看,从1920年澳大利亚发明了离心法制作混凝土制品、1925年日本引进这种技术用于钢筋混凝土管桩,在1962年开发预应力混凝土管桩(PC管桩),到现在已有八九十年的历史,目前管桩已朝着全面取代传统实心桩方向发展。我国是1944年开始生产混凝土离心管桩,到SO年代末期研究成功预应力抽筋管桩,即采用后张法对桩身混凝土施加预应力。近15年,我国生产的预应力混凝土管桩无论从产品性能和产量上都达到了世界前列,呈现出布局面广,产品品种、规格齐全,生产技术成熟,配套应用技术日趋完善等特点。据资料反映,2004年福建省实际利用预制高强混凝土管桩就达2500万米。为了更合理利用管桩这一技术、有效地推广使用管桩,对管桩进行研究是极为必要的。

1设计协调方面

湛江自来水公司综合住宅楼工程框架结构九层,总高度为31.50m。位于湛江市海滨地带,地质状况:地面以下2.5~4m为机械吹填海砂层,地表平坦,砂层往下为淤泥层,属冲刷和淤泥环境沉积类型。第四纪软土厚度较大,特别是第二层的淤泥层,厚度达8.50~15.20m,层面为极具特色的海陆沉积湛江组层型。场区下水位于地表下1.20m层面,属上层滞水带类型。该工程桩基设计采用高强度预应力混凝土管桩(桩径为500mm,壁厚100mm,管桩混凝土强度C80),单桩承载力为700kN,有效桩长为26—29m,总桩数230根,采用三节接桩。基础采用群桩上的整体筏板及局部承台。

管桩的种类分为:钢管桩、预制混凝土管桩及钢管混凝土管桩。钢管桩及钢管混凝土管桩具有高强度、抗冲击疲劳性能好、贯入能力强、便于割接、质量可靠、运输方便、沉桩速度快及挤土影响小等优点,但造价高,约为预应力混凝土管桩的3-10倍。因此,一般只在必须穿越砂层或其它桩型无法施工和质量难以保证、或工期紧迫等情况下使用,或者是一些重要的特种工程的基础上,如海上钻井平台,港口平台等工程中使用。

石油化工装置整体设计具有特殊性,顺序为“先上后下”,先安装设计,再土建设计;先设计工艺流程,再设计设备型号、位置、管线及电缆走向,后根据设备位置、管道布置等设计其基础和厂房机棚构筑物。

湛江海运集团综合住宅楼工程框架结构九层,总高度为32.10m。地质状况属软土地基,从第l层~第8层均为松软地层,力学性质差,第9层持力层为地表下深25m以上的厚8~14m的粘土层。本工程位于市区中心,周围的东、北、西三面为多层住宅群,距离6~8m;南面临街。该工程的桩基础设计采用先张高强度预应力混凝土管桩(直径为400mm,管桩壁厚95mm,混凝土强度为C80),单桩承载力为700kPa,桩长27~30m,总桩数289根,采用三节接桩,基础采用群桩上分组承台。

预制混凝土管桩之所以得到迅速发展和广泛的应用,主要是由于具有以下优点:

因此,土建基础图纸常常出现管道、设备、电仪图纸存档完,土建图纸仍未出全,后期反复增加基础多、设计变更多,到货设备与基础图纸尺寸不符等问题,而且由于进度紧张而提前开工,催促设计将未审查的白图或电子文档图出版,且未经图纸审查就付诸实践。由于到后期大部分构筑物已成型,继而出现的设计尺寸不符、设计布置不合理等情况,处理起来十分困难,不仅耗费资源,而且会拖延工期。又如在基础图纸不全的情况下,抢先施工钢构架,造成在钢柱密布的狭窄区域施工基础,使得土方机械作业和商品混凝土浇筑工作面受限,再加上作业环境复杂、交叉作业等影响,施工质量难以达到预期目标。

2 预应力混凝土管桩的质量检验与试验

云顶国际,施工工期短,施工方便、不受季节限制,工业化生产:

从现实情况反思原因,就需要做好两方面工作:第一,设计各专业做到紧密配合,设计与设备生产厂家数据资料准确衔接,使基础尺寸与设备底座吻合。第二,需要建设单位稳步开展工程建设,严格履行工程建设的必要程序,始终以蓝图为依据施工,认真做好图纸评审、设计交底工作。

桩的质量检验液压法压桩同锤击法沉桩,但可利用静力压桩机作反力平衡装置进行桩的静载试验,可省去设置锚桩和反力梁等。为了保证工程的质量,必须分阶段进行单桩承载力的静载和动测试验。

对施工场地无污染,若采用静压式施工更无噪音,符合绿色环保施工要求;

2桩基设计质量

2.1 静载试验法

经济效益可观,同样的地基处理效果(竖向承载力及水平承载力)所使用的混凝土比实心桩节省30%-60%且抗腐蚀能力强,工作性能同钢管桩基本相似。

与本项目邻近的一套硫磺回收装置,在进行桩基承载力试验后,有近80%的桩未达到设计的单桩承载力极限值。总厂组织了多次质量专题会,讨论原因和对策。后来发现桩基的设计单位把每根桩入土深度逐项列出,表示达到该深度即能达到桩端持力层。尽管设计人员辛勤的根据岩土报告算出了每根桩深度,给施工单位管桩材料采购量给出了准确的数据,极大的帮助了他们解决规划施工场地材料堆放、采购费用控制等问题,可在施工有计划的组织完后,桩基却出现了质量问题,这些补救措施费用远远超出了带来的收益。分析其原因为:设计计算的桩长是依据勘察的岩土工程报告,而岩土报告中分布的点密度有限,难以反映整个区域地下图纸的特征,因为整个工程建设地点原来地势起伏大,在场地平整过程中,有挖方区,也有填方区,但平整完后场地难以体现该情况,报告中持力层起伏大落差达27m,且变化不均匀,在实际压桩过程中可以看出,相距2-3m的桩到达持力层后桩长相差5m之多,所以设计人员算出的桩端标高并不是准确的持力层位置,造成多数桩端未达岩层,无法达到设计桩基承载力要求。

以湛江海运集团综合住宅楼的桩基质量试验为例:管桩的静载试验要模拟实际荷载情况,通过静力加压,得出3根试桩荷载一沉降关系曲线近似 试桩的入土深度分别为-28.50m、-29.70m和-29.90m,表明均进入第9层粘土层。根据上述系列关系曲线,综合评定确定其容许承载力,它已较好地反映单桩的实际承载力,满足设计要求。

对持力层起伏变化较大的地质条件适应性强,一般情况下,软土、粘性土、粉土、砂土及全风化岩体等地层条件均可采用。因此像高层建筑、码头工程、桥梁工程、高速公路、铁道工程等除必须采用钢管桩的特殊基础外,在工程中钢管桩已大部分被预制混凝土管桩所代替。现在我国预制混凝土管桩使用量已经相当可观。

对照本人所在项目,以不同的角度说明,设计图纸说明桩基施工的技术参数以合格的试桩结果为准,但试桩过程中,出现两个问题:一是首根试桩在较小的压力下即破坏,因此项目上一致怀疑试桩所用厂家的桩身质量;二是试桩位置持力层浅,进尺9m即入岩,假设持力层较深,如27m以上入岩,桩侧的摩擦阻力就越大,挤土回弹力也越大,这样,此时的终压力值必定大于这根9m的试桩。因此,以试桩数据作为实施依据就不合理。之后项目部、监理先后组织了三次会,要求设计给出桩基的终压力值,在图纸会审会上,设计定出了PHC400AB95型管桩的终压力2600KN,PHC500AB100型管桩终压力为3000KN。在实际的压桩过程中,对压桩力严格控制,保证每根桩都达到要求,后,除了有6根爆桩以及超深的桩,其他的均顺利成桩,桩基的完整性和承载力试验均合格。这充分说明了静压桩施工质量应以压力控制为主,标高控制为辅,相反,则容易忽略主要矛盾,质量难以控制。这就首先要求设计有扎实的专业基础,能有效的指导实际施工。其次,图纸会审程序必不可少,以项目管理团队的专业力量来对设计在实施时可能存在的不科学、不合理的方面提出疑问,并及时制定措施解决。尽管现在很多项目在这个环节都不够重视,设计不审图,施工不看图,之后也勉强解决了,但是,若能在问题暴露前有效给予解决,也许能防止重大的质量问题发生,给工程建设的投资、工期带来效益。

预应力混凝土管桩在桩身强度达到设计要求的前提下,对于粘性土,不应少于15d,且待桩身与土体的结合基本趋于稳定,才能进行试验。

2管桩的承载特性及承载力分析

3工程材料、构件的”三检”

上述试验曲线表明,试桩的桩周摩擦阻力和端承力发挥正常,桩身质量良好,其承载力标准值均大于设计要求700kN的标准值。

2.1管桩的承载特性

工程质量优劣很大一部分起决于所用材料质量。比如在石化行业中,钢结构紧固螺栓通常采用合金钢,对各种金属元素含量有严格要求,可以通过光谱分析检测是否达标。之前的项目,刚进场了一批高强螺栓,由于施工单位正在抢工期,只对高强螺栓连接副的扭矩系数和组件摩擦面的抗滑移系数进行了复检,随即投入安装,监理委托对螺栓的合金含量进行光谱分析检查时,发现部分螺栓铬含量超标,之后又委托了第三方检测单位进行试验,证实该问题普遍存在,这时施工单位已加班赶工装完了20%的高强螺栓,只好停工整改,要求螺栓生产厂家重新发货,对已装好的螺栓逐个拆换,退回不合格的螺栓,返工白白耗费了大量的劳动力和时间。

单桩竖向抗压静载试验一般采用油压千斤顶加载,千斤顶的加载反力装置可根据现场实际条件采用如下方法:

管桩的底桩端部的桩尖形式主要有十字型、圆锥型和开口型。前两种属于封口型。采用封口型桩尖的管桩其承载力主要由桩周的侧摩阻力及桩端的端阻力组成;采用开口型桩靴的管桩则在沉桩过程中桩身下部1/3-1/2桩长的内腔被土体充塞,挤土效应较弱(与沉管桩、静压实心混凝土桩比),对周围建筑物及环境影响小,具有较高的环保性能。但是内腔土塞却为管桩提供了内侧摩阻力,使得管桩的承载力的组成变得更为复杂。影响管桩承载特性的因素很多,比如桩侧土性、桩端土性、桩径、开口管桩的壁厚、人土深度、施工顺序等。预制混凝土管桩通常只具备开口桩的功效。

上述事件说明进场检查验收应该认真执行,不能流于形式,材料若存在质量问题,返工是小,出现影响结构安全的质量事故就难以补救了。施工工序检查验收中有个“三检”制度,意为每道工序完成后,要依次进行自检、互检、专检的三级检查,方可进入下道工序,其实,工程材料、构配件、设备的验收也与此类似,总结起来就是材料生产加工过程的考查、材料进场验收检查以及材料使用在工程上的检查。

锚桩横梁反力装置:由4根锚桩、主梁、次梁、油压千斤顶以及测量仪表等组成。锚桩、反力梁装置能提供的反力应不小于预估最大试验荷载的1.2~1.5倍。

2.2管桩的受力分析

材料的未出场前的考查一般在工程材料定货后,工程材料进场之前进行。在土建基础材料中,包括预应力桩、钢筋、混凝土等。本项目使用的高强度预应力管桩,在进场前首先检查厂家的营业执照、生产许可证、资质证书等;再对构件的质量证明文件及检测报告进行审查;后考查生产制作过程,包括钢筋笼制作、入模,预应力张拉,混凝土浇注,旋转离心,蒸压养护。管桩的混凝土强度、预应力张拉、模板等要重点检查,混凝土强度不达标、桩身有裂纹、模板漏浆造成的蜂窝麻面会容易使管桩在施压后出现碎裂、断桩。离心成型过程也需要注意,因为我们现场在截桩完,要安放与承台锚固的钢筋笼,这时发现管桩内混凝土浮浆过厚,有的已经在管桩内芯聚积,桩芯的截面积减小了1/3,钢筋笼放不进去,又很难处理,所以,离心过程的各个细节也要认真做到位,浮浆要清除干净。进场后除了检查规格型号、出厂合格证、质量证明、检测报告,主要对外观质量中的表面、桩身弯曲度等进行目测,表面有裂纹、大面积损坏的应严禁使用。在管桩使用过程中,应注意分类码放,核对设计规格,防止混淆,错用型号;有接桩要求的,应先压短桩,再接长桩。总之,考查厂家是从源头抓起,提早发现问题,也能直接的检查材料构件的生产工艺和各项性能指标,真实反映质量情况;进场检查则偏重查看运输过程中的损坏情况,以及到货的规格型号、数量是否符合设计要求,有复检要求的也能再次核验实体质量;施工时的检查重点放在材料保存和发放使用上,如水泥保存不当而受潮的或存放超过3个月的,不能使用,焊条使用时应保持干燥,配备保温筒,钢筋安装时应杜绝出现以低代高,以普通代替抗震等。

压重平台反力装置:由支墩、钢横梁、钢锭、油压千斤项及测量仪表等组成。压重量不得少于预估试桩破坏荷载的1.2倍;压重应在试验开始前一次加上,并均匀稳固的放置于平台上。

2.2.1管桩的竖向承载性状和单桩极限承载力确定管桩竖向承载力的方法很多,最可靠的方法是静力载荷试验法,目前比较常用的公式有两类:一是以土的物理力学指标和大量的试桩资料为依据,经统计分析建立桩侧和桩端阻力与土类指标之间的关系;另一类是以土的力学性能指标如土的标准贯入击数为依据,我国、欧洲及美国API-RP2A的地基基础规范均采用第一类公式。

好的开始是成功的一半,化工装置基础施工中出现的重要质量问题,多数出自设计原因和材料采购上,尽管施工中也会出现大量繁杂的问题,但通过现场的巡视、旁站、平行检验都容易发现,并且及时处理,都可以得到很好的控制。可设计、材料生产质量往往容易忽视,认为设计图纸是万无一失的,图纸如何设计的,就如何施工,直管低头干活,设计有误是设计的责任,与施工无关。材料都有合格证、质量证明书,不会有问题。可一旦发现问题,为时已晚,有的在建设过程中,处理起来费时费力,有的则甚至是工程使用几年或几十年后,比如“11.22”青岛输油管线爆炸事件。总结工程经验,把握好设计质量、材料质量,是做好工程质量控制的前提和基础,能使工程建设得以顺利、平稳开展,应该予以重视。

2.2 动测试验法

由于各地地质条件不同,地质结构比较复杂,桩的类型又多,沉桩工艺也多种多样,很难用单一形式的公式来反映工程实际。

动测试验法,又称动力无损检测法,是检测桩基承载力及桩身质量的一项新技术。高应变动力测试法,也是作为静载试验的补充。采用PDA打桩分析仪桩基测试方法,是利用重锤锤击桩头使桩头产生一个永久性位移而得出桩的极限承载力和桩身结构完整资料。

从文献进行的破坏荷载试验得知,当桩顶竖向受压时,桩身上部首先产生垂直应力和弹性变形,并向桩身下部传递,自上而下逐步建立摩阻力,桩身处于弹性压缩阶段。当荷载较小时,变形量较小,桩基基本没有发生位移,桩端阻力为零。随荷载增加,当垂直应力传递到桩端时,桩端土逐步压缩,桩土相对变形加大,桩侧摩阻力进~步发挥。在加荷载最后阶段,随着桩端阻力的不断增加,桩顶部位侧阻力首先达到极限(摩阻力趋于定值),并向下逐步扩大极限阻力的分布范围,在此过程中相对于荷载增量,作为抗力的摩阻力增量所占比例愈来愈小,而桩端阻力增量所占的比例则愈来愈大。最终导致桩端土出现塑性区并迅速扩展。桩因急剧下沉而失效,桩端土的刺入破坏先于桩身强度破坏。此时桩所承受的荷载就是桩的极限承载力。

海运集团综合住宅楼桩基的动测试验的试桩数为9根。

2.2.2管桩的水平承载性状和单桩极限承载力

3 液压入桩的施工方法

随着我国工程技术的迅速发展,大陆架浅海石油的勘探和开发技术的进步以及陆上高层建筑的发展,使得这些管桩不仅要承受巨大的竖向载荷,还要承受巨大的水平载荷。而桩在侧向载荷作用分析是工程中非常重要但却尚未圆满解决的问题。文献采用卧式千斤顶施加水平力试验来测定单桩水平载荷,施加的水平荷载分级一般取预估水平极限荷载的1/10-1/15,每级荷载施加-后,恒载4min测桩的水平位移值,然后卸载至零,停2min测出桩的残余水平位移值,至此完成一个加卸载循环,如此循环5次便完成一级荷载的试验观测。多级加荷后,出现下列情况之一时可停止试验:1)桩身折断;2)水平位移超过40mm或达到设计要求的水平位移允许值。当桩身应力达到极限强度时的桩顶水平力使桩顶水平位移超过20-30mm,或桩侧土体破坏的前一级水平荷载,即是单桩水平极限承载力标准值。

3.1 施工程序

2.2.3影响管桩承载力的因素

液压管桩的施工程序为:测量定位一桩机就位—)复核桩位一吊桩插桩一桩身对中调直一静压沉桩一接桩一再静压沉桩一送桩一终止压桩一桩质量检验一切割桩头一填充管桩内的细石混凝土。

2.2.3.1偏斜

3.2 施工要点

偏斜桩是指随着桩周土的水平运动,桩与土之间产生的水平压力导致桩身产生水平挠曲和弯矩,致使桩偏斜的被动桩。预应力管桩偏斜后,其极限承载力要低于铅直桩的极限承载力。偏斜预应力管桩的承载力减少程度不仅与其偏斜的程度有关,且与其所处的土层性质、入土桩长、桩与承台布置等均有一定的关系。

静力压桩单桩竖向承载力,可通过桩的终止压力值大致判断,但因土质的不同而异。桩的终止压力不等于单桩的极限承载力,要通过静载对比试验来确定一个系数,然后再利用系数和终止压力,求出单桩竖向承载力的标准值?κ,即?κ=k?s。如判断的终止压力值不能满足设计要求,应立即采取送压加深处理或补桩,以保证桩基的施工质量。

当遇到超过偏斜限量值的桩时,无论其是否发生裂缝,均应进行纠偏扶正处理,将其倾斜度控制在允许的范围内。较浅的(一般2-3m)可以将桩倾斜反向土方挖除后扶正;较深的可以用钻孔取土、高压水冲取土等方式将桩倾斜反向一侧土取出后扶正。然后对纠偏扶正的桩进行检测,看其是否在纠偏施工中发生异常情况,如无异常可进行下步施工。

压桩应控制好终止条件。湛江海运集团综合住宅楼桩基工程,压桩到设计桩长时,压力表的压力达到单桩承载力2.7倍时,即可停止压桩,否则应增加桩长,并会同设计单位另行处理。

2.2.3.2裂缝

压桩应连续进行,采用硫磺胶泥接桩间歇不宜过长(正常气温下为10~18min)3接桩面应保持干净,浇注时间不应超过2min;上下校中心线应对齐,偏差不大于10mm;节点矢高不得大于1%桩长。

浅部裂缝——一般裂缝位置多发生在深度4-6m,也有的在3m以内,出现这种情况多数是桩裂缝部位的下部有相对比较坚硬的土层。深部裂缝一裂缝位置发生在8-10m,出现此种情况多是地基土上部软土层较厚。裂缝的存在势必影响到桩基竖向永久性受荷特性,为确保桩基工程的安全使用,需对桩基进行加固处理。如接桩、补桩,一定情况下还需经计算确定。

垂直度控制,调校桩的垂直度是沉桩质量的关键,须高度重视。插桩在一般情况下人土30~50㎝为宜,然后进行调校。桩机驾驶人员在施工长的组织、指挥下,掌握好双方角度尺两个方向上都归零点,使桩机纵横方向保持水平,调校垂直在规范允许值以内才能沉桩。在沉桩过程中施工员随时观察桩的进尺变化,如遇地质层有障碍物、桩杆偏移时,应分一二个行程逐渐调直。

2.2.3.3偏心载

3.3 沉桩线路的选定

竖向荷载的偏心是预应力混凝土管桩产生弯曲荷载的重要原因,荷载的偏心也势必影响桩的竖向承载力。预应力混凝土管桩基础常采用柱下多桩承台,严格地讲,承台下大多数桩都处于偏心承载状态,对于偏心承载桩如何对桩的承载能力做出正确的评估,桩在正常使用极限状态下所能承受的偏心距临界值是多少,竖向荷载偏心距与桩的承载能力有何关系,这是预应力混凝土管桩基础设计要特别考虑的问题。

预应力桩基施工时随着人桩段数的增多,各层地质构造土体密度随之增高。土体与桩身表面间的摩擦阻力也相应增大,压桩所需的压入力也在增大。为使压桩中各桩的压力阻力基本接近,入桩线路应选择单向行进,不能从两侧往中间进行(即所谓打关门桩),这样地基土在人桩挤密过程中,土体可自由向外扩张,即可避免地基土上溢使地表升高,又不致因土的挤压而造成部分桩身倾斜,保证了群桩的工作基本均匀并符合设计值。湛江海运集团综合住宅楼工程毗邻居民集聚地,东、北、西三面房屋较近,沉桩线路应为桩中心离建筑物近处开压,企图将各土层自北向南排挤(南面临街无建筑物),尽可能地降低挤土效应影响。·

文献根据材料力学原理和现行钢筋混凝土结构设计规范的规定,提出预应力混凝土管桩在偏心荷载(或在桩顶水平位移)作用下内力与位移的计算方法,包括纯弯状态下桩身抗裂弯矩临界值;在轴心力和弯矩共同作用下桩身抗裂弯矩的极限值;桩顶允许承载力与竖向力偏心距(或桩顶水平位移)之间的相互关系式等。

3.4 管桩与承台的连接方式

3管桩设计施工中的问题及质量控制

上述工程管桩与承台采用刚接。管桩的桩头均采用专用工具锯断,断口平齐,故不能利用桩身内的钢筋伸入承台作为连接的钢筋。在桩头的桩管内填充4200mm高的C30细石混凝土,并在混凝土中均分插入6ф14钢筋与承台连接。图1为管桩与承台连接大样。

3.1挤土效应

4 管桩的设计及施工中应注意的事项

在沉桩过程中,土体向四周排挤,使周围的土受到严重的扰动,主要表现为径向位移,桩尖和桩周一定范围内的土体受到不排水剪切以及很大的水平挤压,产生较大的剪切变形,形成具有很高孔隙水压力的扰动重塑区,降低了土的不排水抗剪强度,促使桩周邻近土体会因不排水剪切而破坏,由于群桩施工中的迭加作用,会使已打入桩和邻近管线产生较大侧向位移和上浮。桩群越密越大,土的位移也越大。

管桩的造价较高,桩基础设计时须根据上部荷载、工程地质条件等综合考虑,多方案比较后方可采用。同一工程中桩的规格、型号不应太多,以免造成施工困难,特别是注意避免造成施工错误。

施工遇到挤土效应采取的防治措施是:

综合考虑地质情况和桩身强度,确定单桩承载力。管桩为开口桩,根据现场压桩观察分析,在入土过程中,会较快地在桩尖处形成一土楔,使其入土时的挤土情况与闭口桩无异,故在确定单桩承载力时将开口桩按闭口桩考虑。

①合理安排沉桩顺序、控制每日打桩的数量,减少孔隙水压力的迭加:

适当限制压桩速度,沉桩速度一般控制在lm/min左右为宜,使各层土体能正确反映其抗剪能力。当地基表层中存在大块石头等障碍物时,要避免压偏。

②采用先开挖基坑后沉桩的施工工序,可减少地基浅层软土的侧向位移和隆起,有利于降低沉桩所引起的超静孔隙水压力,从而减少地基深层土体变位。

压桩机应根据土质情况配足额重量或选用相应的液压桩机。

③在场地设置袋装砂井或塑料排水板,创造排水条件以降低孔隙水压力。

若采用焊接法接桩时,须分层均匀地将套箍对焊的焊缝填满,为加快施工速度,减少接桩时间,可设2~3名焊工同时施焊,焊毕停约lmin即可进行沉桩。

④预钻孔辅助沉桩。

管桩身不受损坏;桩帽、桩身和送桩的中心线应重合;压同一根桩应缩短停息时间。

浮桩现象是静压管桩挤土效应的一种表现形式。该问题表现得很隐蔽,并且往往是等到压桩工程完工后做静载检测时才发现,而此时桩机可能已退场。此时再来处理就非常被动。比较好的处理措施是:提前选取有代表性的桩进行测量监控,在桩施工结束后应立即用水准仪测量记录其桩顶标高,并在整个施工过程中定期复测,通过比较来检查桩身是否有上浮现象。如果发现有上浮现象,则需采取前面提过的控制压桩速率、重新调整压桩路线或钻孔取土等措施,减少挤土效应进而控制桩身上浮现象。如果采取上述措施后仍不能解决桩身上浮现象,则可采用复压的补救方法进行处理。

压桩机的液压入桩有一定的垂直行程高度,如YZY360桩机的垂直行程为1.5m,即每入桩1.5m即松开抱桩器。开动油泵使之上移,再抱桩固定压入,循环作业。在开始的第一二个行程,要特别注意控制桩身的垂直度。

3.3沉桩达不到设计要求

记录入桩行程深度及相应压力值,以判别入桩情况正常与否及桩的承载能力。

沉桩达不到设计的最终控制要求主要原因是:①勘探点不够或勘探资料粗糙,对工程地质情况不明,尤其是对持力层起伏标高不明,导致设计考虑持力层或选择桩长有误。②设计持力层选择不当,预应力管桩持力层宜选择强风化层,以达到较高承载力。但当强风化层埋深较深时,考虑到桩长限制,不得已选择全风化层作持力层时,承载力将受较大影响,特别是全风化层有遇水易软化特点,地下水可能通过桩管内从桩尖渗入,大大降低桩端承载力。③设计对单桩承载力预估不准,导致实际桩长与压桩力不匹配。④桩身断裂致使不能继续施压。

为减少静力压桩的挤土效应,应采取如下措施:

防治措施为首先详细探明工程地址地质情况,必要时应作补勘,正确选择持力层或标高;施工采用合适吨位桩机;根据工程地质条件,合理选择桩的施工方法及打桩顺序,避免断桩,确保桩身质量。科学设计,通过试桩确定合理终压标准。

a) 设置袋装砂井或塑料排水板,以消除部分超孔隙水压力,减少挤土现象。袋装砂井直径一般为70~80mm,间距l~1.5m,深度10~12m。塑料排水板的深度、间距与袋装砂井相同。

断桩是预制混凝土管桩施工中常常遇到的问题,其产生的主要原因主要有:①使用了厂家生产的未经检验的不合格的桩;②桩尖碰到地下障碍物管桩被蹩断:③管桩施工中垂直度没有控制好;④管桩由软弱土层突然进入硬土层,桩机压力迅速升高,桩身受到瞬间冲击力而引起;⑤基坑施工中,由于软土推挤隆起,基坑壁侧向移动造成断桩。

b) 设置隔离板桩

施工中若发现有断桩,就要采取补强加固方案处理。对预应力管桩浅层断桩可采用接桩。对深层断桩的接桩(包括部分错位桩纠偏后接头)要抽干桩内积水,确认桩的倾斜在允许范围内,放人钢筋笼,钢筋笼应伸到断桩下3m,用高等级混凝土灌注。接桩后要进行承载力检测。当断桩处错位,无法复原时,应重新补桩。对工程事故应分析问题的原因、补桩的可能性和对已施工桩的影响,考虑其它可利用条件以及经济和工期等要求。

c) 压桩过程中应加强邻近建筑物、地下管线的观测、监护。

管桩作为一种新桩型以其桩身质量可靠、承载力高、施工速度快、现场整洁、较为经济等优点越来越得到广泛的应用。但由于管桩的应用时间不长,在研究和应用等方面都还存在着不少亟待解决的问题。而工程实践的发展已远远超过理论研究水平,使得管桩的应用受到严重制约。本文总结了管桩的承载力特性和受力分析、影响管桩承载力的因素以及提高管桩承载力的方法、施工中常见问题以及防治措施。但文中所涉及到的诸多问题目前都还没有得到圆满的解决,因此还需要通过大量的科学研究和工程实践来做进一步探讨。

本文由云顶国际发布于现代文学,转载请注明出处:管桩的应用和研究现状分析

关键词: 云顶国际